796 research outputs found

    Deep supervised learning using local errors

    Get PDF
    Error backpropagation is a highly effective mechanism for learning high-quality hierarchical features in deep networks. Updating the features or weights in one layer, however, requires waiting for the propagation of error signals from higher layers. Learning using delayed and non-local errors makes it hard to reconcile backpropagation with the learning mechanisms observed in biological neural networks as it requires the neurons to maintain a memory of the input long enough until the higher-layer errors arrive. In this paper, we propose an alternative learning mechanism where errors are generated locally in each layer using fixed, random auxiliary classifiers. Lower layers could thus be trained independently of higher layers and training could either proceed layer by layer, or simultaneously in all layers using local error information. We address biological plausibility concerns such as weight symmetry requirements and show that the proposed learning mechanism based on fixed, broad, and random tuning of each neuron to the classification categories outperforms the biologically-motivated feedback alignment learning technique on the MNIST, CIFAR10, and SVHN datasets, approaching the performance of standard backpropagation. Our approach highlights a potential biological mechanism for the supervised, or task-dependent, learning of feature hierarchies. In addition, we show that it is well suited for learning deep networks in custom hardware where it can drastically reduce memory traffic and data communication overheads

    An event-based architecture for solving constraint satisfaction problems

    Full text link
    Constraint satisfaction problems (CSPs) are typically solved using conventional von Neumann computing architectures. However, these architectures do not reflect the distributed nature of many of these problems and are thus ill-suited to solving them. In this paper we present a hybrid analog/digital hardware architecture specifically designed to solve such problems. We cast CSPs as networks of stereotyped multi-stable oscillatory elements that communicate using digital pulses, or events. The oscillatory elements are implemented using analog non-stochastic circuits. The non-repeating phase relations among the oscillatory elements drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on a number of CSPs under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed.Comment: First two authors contributed equally to this wor

    Hardware-efficient on-line learning through pipelined truncated-error backpropagation in binary-state networks

    Get PDF
    Artificial neural networks (ANNs) trained using backpropagation are powerful learning architectures that have achieved state-of-the-art performance in various benchmarks. Significant effort has been devoted to developing custom silicon devices to accelerate inference in ANNs. Accelerating the training phase, however, has attracted relatively little attention. In this paper, we describe a hardware-efficient on-line learning technique for feedforward multi-layer ANNs that is based on pipelined backpropagation. Learning is performed in parallel with inference in the forward pass, removing the need for an explicit backward pass and requiring no extra weight lookup. By using binary state variables in the feedforward network and ternary errors in truncated-error backpropagation, the need for any multiplications in the forward and backward passes is removed, and memory requirements for the pipelining are drastically reduced. Further reduction in addition operations owing to the sparsity in the forward neural and backpropagating error signal paths contributes to highly efficient hardware implementation. For proof-of-concept validation, we demonstrate on-line learning of MNIST handwritten digit classification on a Spartan 6 FPGA interfacing with an external 1Gb DDR2 DRAM, that shows small degradation in test error performance compared to an equivalently sized binary ANN trained off-line using standard back-propagation and exact errors. Our results highlight an attractive synergy between pipelined backpropagation and binary-state networks in substantially reducing computation and memory requirements, making pipelined on-line learning practical in deep networks.Comment: Now also consider 0/1 binary activations. Memory access statistics reporte

    Effect of particle morphology on film cracking

    Get PDF
    233 p.With the aim of reducing VOC emissions and producing more sustainable coatings and adhesives, solvent borne polymers are gradually being replaced by water-based alternatives. However, the mechanical properties of water borne systems are typically not as good as those of solvent borne products due to differences in the film formation process.The thesis aimed at shedding some light on film formation and cracking problem to be able to design soft core-hard “shell” latexes that yield VOC and crack free, mechanically strong coatings that can be cast at low temperatures. These are particles consisting of a soft core covered by patches of hard polymer. Different strategies have been used to overcome the film formation and cracking problem like . A mathematical model for cracking prediction and stress calculation during drying of aqueous dispersions of soft core-hard “shell” particles was developed. The model solved numerically the incompressible Navier-Stokes and continuity equations using COMSOL Multiphysics. The model was validated with experimental data. A good agreement between experimental results and model predictions was achieved.The results presented in this work highlight that careful design of soft core-hard “shell" polymer dispersions allows overcoming the film formation dilemma frequently found in water borne coatingsIndustrial Liaison Program in Polymerization in Dispersed Media POLYMAT

    Rhythmic inhibition allows neural networks to search for maximally consistent states

    Full text link
    Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits yet its computational role still remains elusive. We show that a model of Gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multi-stability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework which can be used to model other 'perceptual inference' phenomena

    Surrogate Gradient Learning in Spiking Neural Networks

    Get PDF
    Spiking neural networks are nature's versatile solution to fault-tolerant and energy efficient signal processing. To translate these benefits into hardware, a growing number of neuromorphic spiking neural network processors attempt to emulate biological neural networks. These developments have created an imminent need for methods and tools to enable such systems to solve real-world signal processing problems. Like conventional neural networks, spiking neural networks can be trained on real, domain specific data. However, their training requires overcoming a number of challenges linked to their binary and dynamical nature. This article elucidates step-by-step the problems typically encountered when training spiking neural networks, and guides the reader through the key concepts of synaptic plasticity and data-driven learning in the spiking setting. To that end, it gives an overview of existing approaches and provides an introduction to surrogate gradient methods, specifically, as a particularly flexible and efficient method to overcome the aforementioned challenges
    corecore